Einladung

zum

Mathematischen Kolloquium

Am Donnerstag, dem 2. Februar 2012, spricht

Herr Dr. habil. Peter Ruckdeschel,
Abteilung Finanzmathematik
Fraunhofer ITWM, Kaiserslautern
Gast am Lehrstuhl für Stochastik
bei Prof. Dr. Helmut Rieder

über das Thema

Optimally-Robust Filtering

Abstract

We present optimality results for (distributionally-)robust filtering, building up on, and extending results obtained in my PhD thesis in Bayreuth: Following the general spirit of robust statistics, in a general state space model framework, we extend the ideal model and allow for both system-endogenous and -exogenous outliers, which induces the conflicting goals of tracking and attenuation.

We solve corresponding minimax MSE-problems for both types of outliers separately, resulting in corresponding saddle-points. As operational solution, insisting on recursivity, we obtain the rLS filter and variants of it specialized to endogenous and to exogenous outliers, respectively, and a hybrid version that can cope with both types –after a certain delay.

In context of linear, time discrete, and time-invariant Euclidean state space models, these results assume knowledge of hyper parameters, i.e.; innovation and error covariances, as well as transition and observations matrices, which in many applications have to be estimated. The standard approach is an EM algorithm, which is non-robust, though. For computational reasons, we discuss a stepwise robustification where each stage of the algorithm is robustified separately.

A similar situation can be found in a Hidden Markov Model (HMM) context where we head for a robustification of an online EM-type algorithm due to Elliott. This algorithm involves a change of probability measure technique, which we show to be prone to exogenous outliers. The corresponding M-step produces adaptive estimates for the model parameters, using recursive filters for processes of the underlying Markov chain. We propose a robustification which in the filtering step extends results presented in the first part and in the M-step uses strategies known to be useful in the context of Gaussian location-scale models.

We apply this algorithm in an asset allocation problem in discrete time and develop trading strategies to optimally invest in growth or value stocks.

Beginn: 16.30 Uhr (Kaffee/Tee ab 16.00 Uhr im Seminarraum 748)
Ort: Hörsaal H 19, Gebäude Naturwissenschaften II, Universitätsgelände

gez. A. Christmann